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Introduction

hola-Beam based detection of lattice errors?

holahola⇒ Resonance driving terms

hola-Can they be measured?

holahola⇒ Pick-up system

hola-Can one localise the lattice errors?

holahola⇒ Pick-ups around the ring

hola-Does it work for realistic beams?

holahola⇒ Multiparticle considerations

hola-Real application:

holahola⇒ Experiment at the SPS

hola-Outlook for the PS Booster, RHIC

holadand LHC
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Resonance driving terms

• They provide a way to find linear and non–

linear lattice errors:

– Coupling (a2)

– Beta–beating (b2)

– Detuning with amplitude (b23, b4,...)

– Non–linear resonances (b3, b4,...)

• and minimise them by use of correction cir-

cuits.
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Technique overview
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Example of phase space deformation

hhhLinear motion Non-linear motion
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Relation between resonances and spectral lines

-Resonance (p,q) means:

pQx + qQy = n, with n ∈ N

-The spectral line (u,v) has the frequency:

uQx + vQy

-The resonance (p,q) introduces the following

spectral lines:

• (u,v)=(1−p,−q) in the spectrum of the hor-

izontal motion,

• (u,v)=(−p,1−q) in the spectrum of the ver-

tical motion.
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Example of a Fourier spectrum

Fourier spectrum of simulation data of a par-

ticle close to the third order resonance.
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Longitudinal variation of resonance terms (I)

AB

SPS

p p
B A hA→B

hBA

hA = hA→B ◦ hBA
hB = hBA ◦ hA→B

}

hA 6= hB

⇒ Amplitude of Driving Terms not the same

⇒ Amplitude constant between lattice errors
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Longitudinal variation of resonance terms (II)

Tracking simulation of FODO lattice with 3

sextupoles:
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⇒ Localisation of multipoles.
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Effect of particle distributions

The motion of the centroid of the beam differs

from that of a single particle when decoher-

ence processes take place. The most relevant

sources of decoherence are:

• Amplitude detuning

Qx = Qx◦ + gx(Ax, Ay)

• Chromaticity

∆Qx = Q′
x
∆p

p
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Amplitude detuning
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Multiparticle versus single particle

SPS Simulation Data
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⇒ The spectral line (u,0) of a decohered signal

is reduced by a factor of |u| compared to the

single particle case.
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Multiparticle spectrum

SPS simulation.
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⇒ The spectral lines become distributions in-

stead of spikes.
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Model versus simulation
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Application: SPS 120 GeV (2000)

Fitting tune line distribution:
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Observable Fit result Classic Meth.
Qx0 −0.38593 ± 5 · 10−5 −0.3859

(∆Qx)1σx
(−3.6 ± 0.1) · 10−4 −3.71 · 10−4

σx[mm/
√

βx] 0.266 ± 0.008

⇒ Measurement of these observables from a single kick
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The SPS
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The experiment at SPS

Technique:

1. Transverse beam oscillation excited by a

single kick.

2. FFT of turn–by–turn signal constructed

from 2 consecutive pick-ups.

Experiments:

• 2000: E=120 GeV, 84 bunches,

2×1012 protons, Qx=26.62 and Qy=26.58.

• 2001: E=26 GeV, single bunch,

2 × 1010 protons, same tunes.

• 2002: E=26 & 80 GeV, single bunch,

2×1010 protons, Qx=26.18 and Qy=26.22.
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Linear Coupling: description

The coupling resonance (1,-1) is driven by the

deformation term f1001 and produces secondary

spectral lines (0,1)H and (1,0)V (the tune lines

(1,0)H and (0,1)V ).

2 × |f1001| =
√

√

√

√

(0,1)H

(1,0)H

(1,0)V

(0,1)V

This measurement of |f1001| is independent of

pick-up calibrations and oscillation amplitudes.

The horizontal tune line (1,0)H depends on the

horizontal kick and the secondary horizontal

line (0,1)H depends on the vertical kick.

holaholaholahola⇒ We kick in both planes.
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Linear Coupling in SPS (2001)

The coupling term |f1001| is plotted as function
of the strength of the skew quadrupoles:
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⇒Model and experiment are in excellent agree-
ment.

⇒This shows that SPS is decoupled in this
particular case.

SL Seminar R. Tomás

19



Linear Coupling in 2002
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Sextupolar driving terms in SPS (2000)

The resonance (3,0) introduces the spectral

line (-2,0).
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⇒ We have a problem!
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Solution

Change polarities of the extraction sextupoles?
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Hardware checks confirmed that these sextupoles

had opposite polarities.

⇒ First success of this technique!
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Line to Resonance conversion

The resonance (3,0) is driven by the deforma-

tion term f3000 and produces the spectral line

(-2,0).

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12 14

(-
2,

0)
/(

1,
0)

Kick amplitude [mm]

a=0.0029 ± 0.0001

Experiment
Linear Fit

|f3000| =
1

6
a

√

βe [
√

µm]

√

βe = 10.6 [
√

m]

⇒ |f3000| is obtained around the ring by doing

this fit for all the pick-ups.
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A. Sextupolar Driving Terms 2001

Bare SPS, Qx=26.62 (No decoherence).
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⇒ Local discrepancies may be due to unknown

sextupole sources.
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B. Introduction of artificial lattice errors

Extraction Sextupoles powered to

+ + + + −−−−30 A.

Data fully decohered ⇒ Line reduced by a fac-

tor 2.
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⇒Large discrepancies: We have a problem!
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C. Solution

The closed orbit as measured from pick-ups is

introduced at the extraction sextupoles in the

model.
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⇒ Improvement due to beta–beating and phase

differences in the model.
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D. Close to the (3,0) resonance

Extraction Sextupoles powered to

+ + + + + + ++3 A. Qx=26.662.

Data fully decohered ⇒ Line reduced by a fac-

tor 2.
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⇒ Smaller variations due to the tune.
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E. Resonance(1,0)

The resonance (1,0) is driven by the term f1200

and produces the spectral line (2,0). Extrac-

tion Sextupoles powered to

+ + + + −−−−30 A. Qx=26.69.

Data fully decohered ⇒ Line reduced by a fac-

tor 2.
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⇒ Good agreement.
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Conclusions

• A method to measure and correct the lin-

ear coupling has been developed. It has the

advantage of being faster than the tradi-

tional closest tune approach.

• For the first time sextupolar resonance terms

have been measured around the SPS:

– Correct sextupole polarities were found.

– The overall agreement between model

and experiment is good after introduc-

ing the closed orbit at the sextupoles.

– The reduction of lines due to decoher-

ence is experimentally confirmed.

– Decoherence also has an advantage.

– A tool for the on–line analysis of the

data has been developed for SPS, ready

for implementation.
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Outlook

• Similar studies have been started at the PS

Booster and at RHIC.

• This method has even larger potential in

conjunction with an AC dipole instead of a

single kick:

– Non destructive measurement

– No decoherence

• A realistic model of LHC showed that this

technique could be applied to measure and

correct linear and non–linear resonances.
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